Matrix Cubes Parameterized by Eigenvalues

نویسندگان

  • Jiawang Nie
  • Bernd Sturmfels
چکیده

Abstract. An elimination problem in semidefinite programming is solved by means of tensor algebra. It concerns families of matrix cube problems whose constraints are the minimum and maximum eigenvalue function on an affine space of symmetric matrices. An LMI representation is given for the convex set of all feasible instances, and its boundary is studied from the perspective of algebraic geometry. This generalizes the known LMI representations of k-ellipses and k-ellipsoids.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Matrix Cubes Parametrized by Eigenvalues

Abstract An elimination problem in semidefinite programming is solved by means of tensor algebra. It concerns families of matrix cube problems whose constraints are the minimum and maximum eigenvalue function on an affine space of symmetric matrices. An LMI representation is given for the convex set of all feasible instances, and its boundary is studied from the perspective of algebraic geometr...

متن کامل

Localization of Eigenvalues in Small Specified Regions of Complex Plane by State Feedback Matrix

This paper is concerned with the problem of designing discrete-time control systems with closed-loop eigenvalues in a prescribed region of stability. First, we obtain a state feedback matrix which assigns all the eigenvalues to zero, and then by elementary similarity operations we find a state feedback which assigns the eigenvalues inside a circle with center   and radius. This new algorithm ca...

متن کامل

Continuation of Invariant Subspaces for Parameterized Quadratic Eigenvalue Problems

We consider quadratic eigenvalue problems with large and sparse matrices depending on a parameter. Problems of this type occur, for example, in the stability analysis of spatially discretized and parameterized nonlinear wave equations. The aim of the paper is to present and analyze a continuation method for invariant subspaces that belong to a group of eigenvalues the number of which is much sm...

متن کامل

Cellular Spanning Trees and Laplacians of Cubical Complexes

We prove a Matrix-Tree Theorem enumerating the spanning trees of a cell complex in terms of the eigenvalues of its cellular Laplacian operators, generalizing a previous result for simplicial complexes. As an application, we obtain explicit formulas for spanning tree enumerators and Laplacian eigenvalues of cubes; the latter are integers. We prove a weighted version of the eigenvalue formula, pr...

متن کامل

Optimization of the parameterized Uzawa preconditioners for saddle point matrices

The parameterized Uzawa preconditioners for saddle point problems are studied in this paper. The eigenvalues of the preconditioned matrix are located in (0, 2) by choosing the suitable parameters. Furthermore, we give two strategies to optimize the rate of convergence by finding the suitable values of parameters. Numerical computations show that the parameterized Uzawa preconditioners can lead ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Matrix Analysis Applications

دوره 31  شماره 

صفحات  -

تاریخ انتشار 2009